Kinks in the standard model chain

Credit: CERN

The subatomic universe is an intricate mosaic of particles and forces. The Standard Model of particle physics is a time-tested instruction manual that precisely predicts how particles and forces behave. But it’s incomplete, ignoring phenomena such as gravity and dark matter.

Today the LHCb experiment at CERN European research center released a result that could be an early indication of new, undiscovered physics beyond the Standard Model.

However, more data is needed before LHCb scientists can definitively claim they’ve found a crack in the world’s most robust roadmap to the subatomic universe.

“In particle physics, you can’t just snap your fingers and claim a discovery,” says Marie-Hélène Schune, a researcher on the LHCb experiment from Le Centre National de la Recherche Scientifique in Orsay, France. “It’s not magic. It’s long, hard work and you must be obstinate when facing problems. We always question everything and never take anything for granted.”

The LHCb experiment records and analyzes the decay patterns of rare hadrons—particles made of quarks—that are produced in the Large Hadron Collider’s energetic proton-proton collisions. By comparing the experimental results to the Standard Model’s predictions, scientists can search for discrepancies. Significant deviations between the theory and experimental results could be an early indication of an undiscovered particle or force at play. … (Symmetry Magazine)

Credit: CERN

%d bloggers like this: