Let’s look a̶t̶ with the Sun

Credit: (Claudio Maccone)

Astronomers use several techniques to find exoplanets, including the so-called “gravitational microlensing” method. The light from a faraway star and its exoplanet is bent around another star located midway between Earth and the distant star/exoplanet, which magnifies its image like a telescope lens. Using this method we’ve already discovered intriguing planets such as Kepler 452b that are hundreds or thousands of light years from Earth.

Now Leon Alkalai from the Jet Propulsion Lab and his co-authors have picked up an earlier suggestion from Italian physicist Claudio Maccone to use our Sun, rather than a distant star, to create what might be the ultimate telescope based on the microlensing principle. Alkalai’s team has investigated the viability of the method in detail as a breakthrough mission concept. They also presented their findings at NASA’s recent Planetary Science Vision 2050 workshop in Washington, D.C.

To build such a “telescope,” detecting instruments would be placed at a point in space where the Sun’s gravity focuses lensed light from distant stars. Not only is the idea viable, according to the Alkalai team, it would produce images that separate the distant star from its exoplanet, a critical observation that is the goal of future space telescopes equipped with Starshades. And using the Sun as a lens would result in much greater magnification. Instead of a single pixel or two, astronomers would get images of 1,000 x 1,000 pixels from exoplanets 30 parsecs, or about 100 light years, away. That translates to a resolution of about 10 kilometers on the planet’s surface, better than what the Hubble Space Telescope can see on Mars, which would allow us to make out continents and other surface features. … (Air & Space)

Credit: Claudio Maccone

%d bloggers like this: