Searching on the ISS why we exist

Credit: NASA

On May 19, 2011, astronauts used a remote-controlled robotic arm to attach a nearly 17,000-pound payload to the side of the International Space Station. That payload was the Alpha Magnetic Spectrometer, or AMS-02, an international experiment sponsored by the US Department of Energy and NASA.

AMS was designed to detect cosmic rays, highly energetic particles and nuclei that bombard the Earth from space. Since its installation, AMS has collected data from more than 90 billion cosmic ray events, experiment lead Sam Ting reported today in a colloquium at the experiment’s headquarters, CERN European research center.

Ting, a Nobel Laureate and Thomas Dudley Cabot Professor of Physics at the Massachusetts Institute of Technology, shared a mix of new and recent results during his talk. Together they spelled out the persistent message of the AMS experiment: We have a lot left to learn from cosmic rays.

For one, cosmic rays could tell us about the imbalance between matter and antimatter in the universe.

Because matter and antimatter particles are created in pairs, scientists think the Big Bang should have produced half of each. But those evenly matched partners would have annihilated one another, and we would not exist.

The generally accepted theory is that this imbalance came about thanks to processes in the very young universe that favor matter over antimatter. But an alternative idea is that a large amount of antimatter is still out there; it just hasn’t had a chance to collide with our matter-filled universe. … (Symmetry Magazine)

Credit: NASA

%d bloggers like this: